Vehicles (Jun 2024)

An Enhanced Model for Detecting and Classifying Emergency Vehicles Using a Generative Adversarial Network (GAN)

  • Mo’ath Shatnawi,
  • Maram Bani Younes

DOI
https://doi.org/10.3390/vehicles6030053
Journal volume & issue
Vol. 6, no. 3
pp. 1114 – 1139

Abstract

Read online

The rise in autonomous vehicles further impacts road networks and driving conditions over the road networks. Cameras and sensors allow these vehicles to gather the characteristics of their surrounding traffic. One crucial factor in this environment is the appearance of emergency vehicles, which require special rules and priorities. Machine learning and deep learning techniques are used to develop intelligent models for detecting emergency vehicles from images. Vehicles use this model to analyze regularly captured road environment photos, requiring swift actions for safety on road networks. In this work, we mainly developed a Generative Adversarial Network (GAN) model that generates new emergency vehicles. This is to introduce a comprehensive expanded dataset that assists emergency vehicles detection and classification processes. Then, using Convolutional Neural Networks (CNNs), we constructed a vehicle detection model demonstrating satisfactory performance in identifying emergency vehicles. The detection model yielded an accuracy of 90.9% using the newly generated dataset. To ensure the reliability of the dataset, we employed 10-fold cross-validation, achieving accuracy exceeding 87%. Our work highlights the significance of accurate datasets in developing intelligent models for emergency vehicle detection. Finally, we validated the accuracy of our model using an external dataset. We compared our proposed model’s performance against four other online models, all evaluated using the same external dataset. Our proposed model achieved an accuracy of 85% on the external dataset.

Keywords