Physics Letters B (Feb 2016)

Thermal dileptons as fireball thermometer and chronometer

  • Ralf Rapp,
  • Hendrik van Hees

DOI
https://doi.org/10.1016/j.physletb.2015.12.065
Journal volume & issue
Vol. 753, no. C
pp. 586 – 590

Abstract

Read online

Thermal dilepton radiation from the hot fireballs created in high-energy heavy-ion collisions provides unique insights into the properties of the produced medium. We first show how the predictions of hadronic many-body theory for a melting ρ meson, coupled with quark–gluon plasma emission utilizing a modern lattice-QCD based equation of state, yield a quantitative description of dilepton spectra in heavy-ion collisions at the SPS and the RHIC beam energy scan program. We utilize these results to systematically extract the excess yields and their invariant-mass spectral slopes to predict the excitation function of fireball lifetimes and (early) temperatures, respectively. We thereby demonstrate that future measurements of these quantities can yield unprecedented information on basic fireball properties. Specifically, our predictions quantify the relation between the measured and maximal fireball temperature, and the proportionality of excess yield and total lifetime. This information can serve as a “caloric” curve to search for a first-order QCD phase transition, and to detect non-monotonous lifetime variations possibly related to critical phenomena.