Y/X-Chromosome-Bearing Sperm Shows Elevated Ratio in the Left but Not the Right Testes in Healthy Mice
Chengqing Hu,
Jiangcheng Shi,
Yujing Chi,
Jichun Yang,
Qinghua Cui
Affiliations
Chengqing Hu
Center for Noncoding RNA Medicine, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, MOE Key Laboratory of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing 100191, China
Jiangcheng Shi
Center for Noncoding RNA Medicine, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, MOE Key Laboratory of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing 100191, China
Yujing Chi
Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing 100044, China
Jichun Yang
Center for Noncoding RNA Medicine, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, MOE Key Laboratory of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing 100191, China
Qinghua Cui
Center for Noncoding RNA Medicine, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, MOE Key Laboratory of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing 100191, China
The sex chromosomes play central roles in determining the sex of almost all of the multicellular organisms. It is well known that meiosis in mammalian spermatogenesis produces ~50% Y- and ~50% X-chromosome-bearing sperm, a 1:1 ratio. Here we first reveal that the X-chromosome-encoded miRNAs show lower expression levels in the left testis than in the right testis in healthy mice using bioinformatics modeling of miRNA-sequencing data, suggesting that the Y:X ratio could be unbalanced between the left testis and the right testis. We further reveal that the Y:X ratio is significantly elevated in the left testis but balanced in the right testis using flow cytometry. This study represents the first time the biased Y:X ratio in the left testis but not in the right testis is revealed.