Finite-Time Stability of a Second-Order Bang–Bang Sliding Control Type
Carlos Aguilar-Ibanez,
Ivan J. Salgado Ramos,
Miguel S. Suarez-Castanon,
Jose de Jesus Rubio,
Jesus A. Meda-Campana
Affiliations
Carlos Aguilar-Ibanez
Centro de Investigacion en Computacion, Instituto Politecnico Nacional, Ciudad de Mexico 07738, Mexico
Ivan J. Salgado Ramos
Centro de Innovacion y Desarrollo Tecnologico en Computo, Instituto Politecnico Nacional, Ciudad de Mexico 07738, Mexico
Miguel S. Suarez-Castanon
Escuela Superior de Computo, Instituto Politecnico Nacional, Ciudad de Mexico 07738, Mexico
Jose de Jesus Rubio
Escuela Superior de Ingenieria Mecanica y Electrica Unidad Azcapotzalco, Instituto Politecnico Nacional, Ciudad de Mexico 02550, Mexico
Jesus A. Meda-Campana
Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico
This paper presents the double chain–integrator finite-time convergence in a closed loop with a second-order bang–bang sliding control. The direct Lyapunov method carried out the stability analysis and the reaching time estimation using a suitable non-smooth strong Lyapunov function. That is, the proposed energy function is strictly positive definite, with a strictly definite negative time derivative. Additionally, the proposed function estimates the reaching time in the presence of matching bounded perturbations. Numerical comparisons with well-known approaches were performed to assess the proposed strategy’s effectiveness.