Annals of Geophysics (May 2010)
Bayesian approach to magnetotelluric tensor decomposition
Abstract
<!--[if gte mso 9]><xml> <o:DocumentProperties> <o:Template>Normal.dotm</o:Template> <o:Revision>0</o:Revision> <o:TotalTime>0</o:TotalTime> <o:Pages>1</o:Pages> <o:Words>210</o:Words> <o:Characters>1198</o:Characters> <o:Company>INGV BO</o:Company> <o:Lines>9</o:Lines> <o:Paragraphs>2</o:Paragraphs> <o:CharactersWithSpaces>1471</o:CharactersWithSpaces> <o:Version>12.0</o:Version> </o:DocumentProperties> <o:OfficeDocumentSettings> <o:AllowPNG /> </o:OfficeDocumentSettings> </xml><![endif]--><!--[if gte mso 9]><xml> <w:WordDocument> <w:Zoom>0</w:Zoom> <w:TrackMoves>false</w:TrackMoves> <w:TrackFormatting /> <w:HyphenationZone>14</w:HyphenationZone> <w:PunctuationKerning /> <w:DrawingGridHorizontalSpacing>18 pt</w:DrawingGridHorizontalSpacing> <w:DrawingGridVerticalSpacing>18 pt</w:DrawingGridVerticalSpacing> <w:DisplayHorizontalDrawingGridEvery>0</w:DisplayHorizontalDrawingGridEvery> <w:DisplayVerticalDrawingGridEvery>0</w:DisplayVerticalDrawingGridEvery> <w:ValidateAgainstSchemas /> <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid> <w:IgnoreMixedContent>false</w:IgnoreMixedContent> <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText> <w:Compatibility> <w:BreakWrappedTables /> <w:DontGrowAutofit /> <w:DontAutofitConstrainedTables /> <w:DontVertAlignInTxbx /> </w:Compatibility> </w:WordDocument> </xml><![endif]--><!--[if gte mso 9]><xml> <w:LatentStyles DefLockedState="false" LatentStyleCount="276"> </w:LatentStyles> </xml><![endif]--> <!-- /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-parent:""; margin:0cm; margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman"; mso-bidi-font-family:"Times New Roman"; mso-ansi-language:CS; mso-fareast-language:CS;} @page Section1 {size:612.0pt 792.0pt; margin:70.85pt 2.0cm 2.0cm 2.0cm; mso-header-margin:36.0pt; mso-footer-margin:36.0pt; mso-paper-source:0;} div.Section1 {page:Section1;} --> <!--[if gte mso 10]> <mce:style><! /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabella normale"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman"; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} --> <!--[endif]--> <!--StartFragment--> <p class="MsoNormal"><span lang="CS">Magnetotelluric directional analysis and impedance tensor decomposition are basic tools to validate a local/regional composite electrical model of the underlying structure. Bayesian stochastic methods approach the problem of the parameter estimation and their uncertainty characterization in a fully probabilistic fashion, through the use of posterior model probabilities.We use the standard GroomBailey 3D local/2D regional composite model in our bayesian approach. We assume that the experimental impedance estimates are contamined with the Gaussian noise and define the likelihood of a particular composite model with respect to the observed data. We use noninformative, flat priors over physically reasonable intervals for the standard GroomBailey decomposition parameters. We apply two numerical methods, the Markov chain Monte Carlo procedure based on the Gibbs sampler and a singlecomponent adaptive Metropolis algorithm. From the posterior samples, we characterize the estimates and uncertainties of the individual decomposition parameters by using the respective marginal posterior probabilities. We conclude that the stochastic scheme performs reliably for a variety of models, including the multisite and multifrequency case with up to several hundreds of parameters. Though the Monte Carlo samplers are computationally very intensive, the adaptive Metropolis algorithm increase the speed of the simulations for largescale problems. </span></p> <!--EndFragment-->