Nature Communications (Nov 2024)
A Ni4O4-cubane-squarate coordination framework for molecular recognition
Abstract
Abstract Molecular recognition is a fundamental function of natural systems that ensures biological activity. This is achieved through the sieving effect, host-guest interactions, or both in biological environments. Recent advancements in multifunctional proteins reveal a new dimension of functional organization that goes beyond single-function molecular recognition, emphasizing the need for artificial multifunctional materials in industrial applications. Herein, we have designed a porous Ni4O4-cubane squarate coordination polymer as an artificial molecular recognition host, drawing inspiration from the structural and functional features of natural enzymes. A comprehensive assessment of the material’s ability to distinguish target species under different operating conditions was carried out. The results confirm its sieving function through hexane isomers separation, host-guest interaction function via xenon/krypton separation, and dual presence of sieving and interaction through carbon dioxide/nitrogen separation. Additionally, the material demonstrates good stability and feasibility for large-scale production, indicating its practical potential. Our findings provide a bio-inspired multifunctional recognition material for chemical separations as proof-of-concept while offering solutions to advance artificial multifunctional materials adaptable to other applications beyond chemical separations.