BMC Genomics (Feb 2022)

Genome-wide investigation of the ZF-HD gene family in two varieties of alfalfa (Medicago sativa L.) and its expression pattern under alkaline stress

  • Kai He,
  • Chunxin Li,
  • Zhenyue Zhang,
  • Lifeng Zhan,
  • Chunlong Cong,
  • Depeng Zhang,
  • Hua Cai

DOI
https://doi.org/10.1186/s12864-022-08309-x
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Background Zinc finger homeodomain (ZHD) protein is a plant-specific transcription factor and a potential regulator of phosphoenolpyruvate carboxylase (PEPCase)-coding genes, and it also participates in plant growth regulation and abiotic stress responses. To study the function of MsZF-HD genes in the alkaline stress response, this paper assessed biological information and performed transcriptome analysis of the MsZF-HD gene family by using the genomes of two different varieties of alfalfa (XinJiangDa Ye and Zhongmu No. 1). Results In total, 49 and 11 MsZF-HD genes were identified in the two different varieties respectively, including the alleles of XinJiangDa Ye. According to their phylogenetic relationships, the 60 MsZF-HD genes were divided into 5 ZHD subfamilies and 1 MIF subfamily. A total of 88.3% of MsZF-HD genes do not contain introns and are unevenly distributed among the 6 chromosomes of alfalfa. A collinearity analysis indicated that 26 genes of XinJiangDa Ye have no orthologous genes in Zhongmu No. 1, although these genes (such as ZHD-X1–2, ZHD-X3–2 and ZHD-X4–2) have homologous genes in Arabidopsis thaliana, Medicago truncatula and Glycine max. Through RNA-seq and qRT–PCR verification, it was found that MsZF-HD genes are downregulated to participate in the alkaline stress response. Conclusion The results of this study may lay the foundation for the cloning and functional study of MsZF-HD genes and provide a theoretical basis for revealing the difference between XinJiangDa Ye and Zhongmu No. 1 at the genome level.

Keywords