Journal of Personalized Medicine (May 2021)

EPR-Effect Enhancers Strongly Potentiate Tumor-Targeted Delivery of Nanomedicines to Advanced Cancers: Further Extension to Enhancement of the Therapeutic Effect

  • Waliul Islam,
  • Shintaro Kimura,
  • Rayhanul Islam,
  • Ayaka Harada,
  • Katsuhiko Ono,
  • Jun Fang,
  • Takuro Niidome,
  • Tomohiro Sawa,
  • Hiroshi Maeda

DOI
https://doi.org/10.3390/jpm11060487
Journal volume & issue
Vol. 11, no. 6
p. 487

Abstract

Read online

For more than three decades, enhanced permeability and retention (EPR)-effect-based nanomedicines have received considerable attention for tumor-selective treatment of solid tumors. However, treatment of advanced cancers remains a huge challenge in clinical situations because of occluded or embolized tumor blood vessels, which lead to so-called heterogeneity of the EPR effect. We previously developed a method to restore impaired blood flow in blood vessels by using nitric oxide donors and other agents called EPR-effect enhancers. Here, we show that two novel EPR-effect enhancers—isosorbide dinitrate (ISDN, Nitrol®) and sildenafil citrate—strongly potentiated delivery of three macromolecular drugs to tumors: a complex of poly(styrene-co-maleic acid) (SMA) and cisplatin, named Smaplatin® (chemotherapy); poly(N-(2-hydroxypropyl)methacrylamide) polymer-conjugated zinc protoporphyrin (photodynamic therapy and imaging); and SMA glucosamine-conjugated boric acid complex (boron neutron capture therapy). We tested these nanodrugs in mice with advanced C26 tumors. When these nanomedicines were administered together with ISDN or sildenafil, tumor delivery and thus positive therapeutic results increased two- to four-fold in tumors with diameters of 15 mm or more. These results confirmed the rationale for using EPR-effect enhancers to restore tumor blood flow. In conclusion, all EPR-effect enhancers tested showed great potential for application in cancer therapy.

Keywords