Applied Sciences (Aug 2024)
Optimizing Porous Concrete Using Granite Stone-Crushing Waste: Composition, Strength, and Density Analysis
Abstract
This study examines the utilization of granite stone-crushing waste in the production of porous concrete, with a particular emphasis on the influence of aggregate composition and cement paste layer thickness on the material’s strength and density. Two types of aggregates were employed in this study: granite crushing screenings and granite crushed stone. The impact of aggregate grain size on the properties of porous concrete properties was investigated, and it was found that the use of granite screenings (2.5–5 mm) resulted in superior concrete characteristics compared to granite crushed stone (5–10 mm). This study puts forward a method for optimizing the composition of porous concrete to achieve an optimal balance of compressive strength and density. A method for the design of porous concrete was proposed, incorporating experimental results and the dependencies of strength on the water/cement ratio (W/C). Equations were developed to predict concrete strength based on W/C and cement paste layer thicknesses (CPLTs). The method provides preliminary mix proportions, which should be validated and adjusted for the final design. The findings demonstrate the potential for utilizing stone-crushing waste to produce environmentally sustainable and high-quality porous concrete.
Keywords