Land (Aug 2024)

Spatiotemporal Variations in Fingerprinting Sediment Sources in a Watershed Disturbed by Construction

  • Baicheng Zhu,
  • Longxi Cao,
  • Sen Yang,
  • Heping Pan,
  • Fei Liu,
  • Yaping Kong

DOI
https://doi.org/10.3390/land13081314
Journal volume & issue
Vol. 13, no. 8
p. 1314

Abstract

Read online

Engineering construction disturbs the Earth’s surface and exacerbates soil erosion, resulting in sediment contributions at the watershed scale, the spatiotemporal variation of which remains to be clarified. Based on a typically disturbed catchment, soil samples were collected from sources such as forests, grasslands, spoil heaps, and exposed slopes. Sediment deposition was sampled in 2022 and 2023 along the main channel and fingerprinting technology was employed to calculate the relative contributions of different sources. The results indicated that the optimal composite fingerprints comprising Na₂O, Li, Sr, and Ce could effectively resolve the contributions of different sources. Natural sources were the main sediment contributors, but the average contribution decreased from 72.96% to 58.73% over two periods. In contrast, the contribution of spoil heaps and exposed slopes increased from 27.04% to 41.27% and the area percentage increased from 0.18% to 0.30%. The spoil heap represents the relatively large area of disturbance and its contact length with the river determines the sediment contribution rates, which varied spatially in a quadratic trend along the channel. Meanwhile, the sediment contribution of relatively small and dispersed exposed slopes could be quantified using a linear equation of the disturbance weighting indicator (DWI) composed of disturbed area and flow distance. These results would be helpful in assessing the environmental impact of engineering disturbances and optimizing mitigation measures.

Keywords