Identification of Ossnrk1a−1 Regulated Genes Associated with Rice Immunity and Seed Set
Yingying Cao,
Minfeng Lu,
Jinhui Chen,
Wenyan Li,
Mo Wang,
Fengping Chen
Affiliations
Yingying Cao
Fujian Universities Key Laboratory for Plant-Microbe Interaction, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Minfeng Lu
Fujian Universities Key Laboratory for Plant-Microbe Interaction, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Jinhui Chen
Fujian Universities Key Laboratory for Plant-Microbe Interaction, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Wenyan Li
Fujian Universities Key Laboratory for Plant-Microbe Interaction, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Mo Wang
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
Fengping Chen
Fujian Universities Key Laboratory for Plant-Microbe Interaction, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Sucrose non-fermenting–1-related protein kinase–1 (SnRK1) is a highly conserved serine–threonine kinase complex regulating plants’ energy metabolisms and resistance to various types of stresses. However, the downstream genes regulated by SnRK1 in these plant physiological processes still need to be explored. In this study, we found that the knockout of OsSnRK1a resulted in no obvious defects in rice growth but notably decreased the seed setting rate. The ossnrk1a mutants were more sensitive to blast fungus (Magnaporthe oryzae) infection and showed compromised immune responses. Transcriptome analyses revealed that SnRK1a was an important intermediate in the energy metabolism and response to biotic stress. Further investigation confirmed that the transcription levels of OsNADH-GOGAT2, which positively controls rice yield, and the defense-related gene pathogenesis-related protein 1b (OsPR1b) were remarkably decreased in the ossnrk1a mutant. Moreover, we found that OsSnRK1a directly interacted with the regulatory subunits OsSnRK1β1 and OsSnRK1β3, which responded specifically to blast fungus infection and starvation stresses, respectively. Taken together, our findings provide an insight into the mechanism of OsSnRK1a, which forms a complex with specific β subunits, contributing to rice seed set and resistance by regulating the transcription of related genes.