International Journal of COPD (Oct 2016)

New evidence of increased risk of rhinitis in subjects with COPD: a longitudinal population study

  • Bergqvist J,
  • Andersson A,
  • Olin AC,
  • Murgia N,
  • Schiöler L,
  • Bove M,
  • Hellgren J

Journal volume & issue
Vol. Volume 11
pp. 2617 – 2623

Abstract

Read online

Joel Bergqvist,1 Anders Andersson,2 Anna-Carin Olin,3 Nicola Murgia,3,4 Linus Schiöler,3 Mogens Bove,5 Johan Hellgren1 1Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Clinical Sciences, 2Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, 3Department of Occupational and Environmental Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 4Department of Medicine, Section of Occupational Medicine, Respiratory Diseases and Toxicology, University of Perugia, Perugia, Italy; 5Department of ENT and Oral Maxillofacial Surgery, NU Hospital Group, Trollhättan, Sweden Background: The aim of this population-based study was to investigate the risk of developing noninfectious rhinitis (NIR) in subjects with chronic obstructive pulmonary disease (COPD). Materials and methods: This is a longitudinal population-based study comprising 3,612 randomly selected subjects from Gothenburg, Sweden, aged 25–75 years. Lung function was measured at baseline with spirometry and the included subjects answered a questionnaire on respiratory symptoms. At follow-up, the subjects answered a questionnaire with a response rate of 87%. NIR was defined as symptoms of nasal obstruction, nasal secretion, and/or sneezing attacks without having a cold, during the last 5 years. COPD was defined as a spirometry ratio of forced expiratory volume in 1 second divided by forced vital capacity (FEV1/FVC) <0.7. Subjects who reported asthma and NIR at baseline were excluded from the study. The odds ratios for developing NIR (ie, new-onset NIR) in relation to age, gender, body mass index, COPD, smoking, and atopy were calculated. Results: In subjects with COPD, the 5-year incidence of NIR was significantly increased (10.8% vs 7.4%, P=0.005) and was higher among subjects aged >40 years. Smoking, atopy, and occupational exposure to gas, fumes, or dust were also associated with new-onset NIR. COPD, smoking, and atopy remained individual risk factors for new-onset NIR in the logistic regression analysis. Conclusions: This longitudinal population-based study of a large cohort showed that COPD is a risk factor for developing NIR. Smoking and atopy are also risk factors for NIR. The results indicate that there is a link present between upper and lower respiratory inflammation in NIR and COPD. Keywords: COPD, rhinitis, smoking, epidemiology, spirometry

Keywords