Scientific Reports (Mar 2023)

Aerobic biodegradation of untreated polyester–polyether urethanes by newly isolated yeast strains Exophilia sp. NS-7 and Rhodotorula sp. NS-12

  • Minoo Giyahchi,
  • Hamid Moghimi

DOI
https://doi.org/10.1038/s41598-023-31639-z
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Polyester-urethanes as the most widely used polyurethanes (PUs) are among the most recalcitrant plastics in natural conditions. Among existing approaches for managing and reducing plastic waste, biodegradation as a promising approach to reduce plastic waste pollution has drawn scientific society's attention in recent years. In this study, two polyester–polyether urethane degrading yeasts were isolated and identified as two new strains of Exophilia sp. NS-7 and Rhodotorula sp. NS-12. The results showed that Exophilia sp. NS-7 is esterase, protease, and urease positive, and Rhodotorula sp. NS-12 can produce esterase and urease. Both strains can degrade Impranil® as the sole carbon source with the highest growth rate in 4–6 and 8–12 days, respectively. SEM micrograph revealed PU degradation ability in both strains by showing so many pits and holes in treated films. The Sturm test showed that these two isolates can mineralize PU to CO2, and significant decreases in N–H stretching, C–H stretching, C=O stretching, and N–H/C=O bending absorption in the molecular structure of PU were revealed by the FT-IR spectrum. The detection of the deshielding effect in chemical shifts of the H-NMR spectrum after the treatment also confirmed the destructive effects of both strains on PU films.