AIMS Mathematics (Aug 2021)

Proof of a Dwork-type supercongruence by induction

  • Yong Zhang,
  • Peisen Yuan

DOI
https://doi.org/10.3934/math.2021671
Journal volume & issue
Vol. 6, no. 10
pp. 11568 – 11583

Abstract

Read online

In this paper we prove a Dwork-type supercongruence: for any prime $ p\geq3 $ and integer $ r\geq 1 $, $ \begin{align*} \sum\limits_{k = 0}^{p^r-1}\frac{3k+1}{16^k}{\binom{2k}{k}}^3\equiv p\sum\limits_{k = 0}^{p^{r-1}-1}\frac{3k+1}{16^k}{\binom{2k}{k}}^3\pmod{p^{3r+1-\delta_{p, 3}}}, \end{align*} $ which extends a result of Guo and Zudilin.

Keywords