International Journal of Nanomedicine (Jan 2012)

Mithramycin encapsulated in polymeric micelles by microfluidic technology as novel therapeutic protocol for beta-thalassemia

  • Capretto L,
  • Mazzitelli S,
  • Brognara E,
  • Lampronti I,
  • Carugo D,
  • Hill M,
  • Zhang X,
  • Gambari R,
  • Nastruzzi C

Journal volume & issue
Vol. 2012, no. default
pp. 307 – 324

Abstract

Read online

Lorenzo Capretto1, Stefania Mazzitelli2, Eleonora Brognara2, Ilaria Lampronti2, Dario Carugo1, Martyn Hill1, Xunli Zhang1, Roberto Gambari2, Claudio Nastruzzi31Engineering Sciences, University of Southampton, Southampton, UK; 2Department of Biochemistry and Molecular Biology, 3Department of Pharmaceutical Sciences, University of Ferrara, Ferrara, ItalyAbstract: This report shows that the DNA-binding drug, mithramycin, can be efficiently encapsulated in polymeric micelles (PM-MTH), based on Pluronic® block copolymers, by a new microfluidic approach. The effect of different production parameters has been investigated for their effect on PM-MTH characteristics. The compared analysis of PM-MTH produced by microfluidic and conventional bulk mixing procedures revealed that microfluidics provides a useful platform for the production of PM-MTH with improved controllability, reproducibility, smaller size, and polydispersity. Finally, an investigation of the effects of PM-MTH, produced by microfluidic and conventional bulk mixing procedures, on the erythroid differentiation of both human erythroleukemia and human erythroid precursor cells is reported. It is demonstrated that PM-MTH exhibited a slightly lower toxicity and more pronounced differentiative activity when compared to the free drug. In addition, PM-MTH were able to upregulate preferentially γ-globin messenger ribonucleic acid production and to increase fetal hemoglobin (HbF) accumulation, the percentage of HbF-containing cells, and their HbF content without stimulating α-globin gene expression, which is responsible for the clinical symptoms of ß-thalassemia. These results represent an important first step toward a potential clinical application, since an increase in HbF could alleviate the symptoms underlying ß-thalassemia and sickle cell anemia. In conclusion, this report suggests that PM-MTH produced by microfluidic approach warrants further evaluation as a potential therapeutic protocol for ß-thalassemia.Keywords: microfluidics, lab-on-a-chip, design of experiments, erythroid differentiation, human erythroid precursor cells