International Journal of Nanomedicine (Oct 2013)

Nanosilica coating for bonding improvements to zirconia

  • Chen C,
  • Chen G,
  • Xie H,
  • Dai W,
  • Zhang F

Journal volume & issue
Vol. 2013, no. Issue 1
pp. 4053 – 4062

Abstract

Read online

Chen Chen, Gang Chen, Haifeng Xie, Wenyong Dai, Feimin Zhang Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China Abstract: Resin bonding to zirconia cannot be established from standard methods that are currently utilized in conventional silica-based dental ceramics. The solution–gelatin (sol–gel) process is a well developed silica-coating technique used to modify the surface of nonsilica-based ceramics. Here, we use this technique to improve resin bonding to zirconia, which we compared to zirconia surfaces treated with alumina sandblasting and tribochemical silica coating. We used the shear bond strength test to examine the effect of the various coatings on the short-term resin bonding of zirconia. Furthermore, we employed field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, and Fourier transform infrared spectroscopy to characterize the zirconia surfaces. Water–mist spraying was used to evaluate the durability of the coatings. To evaluate the biological safety of the experimental sol–gel silica coating, we conducted an in vitro Salmonella typhimurium reverse mutation assay (Ames mutagenicity test), cytotoxicity tests, and in vivo oral mucous membrane irritation tests. When compared to the conventional tribochemical silica coating, the experimental sol–gel silica coating provided the same shear bond strength, higher silicon contents, and better durability. Moreover, we observed no apparent mutagenicity, cytotoxicity, or irritation in this study. Therefore, the sol–gel technique represents a promising method for producing silica coatings on zirconia. Keywords: zirconia, bond, silica coating, tribochemical silica coating, biocompatibility