Symmetry (May 2021)
An Unsupervised Learning Method for Attributed Network Based on Non-Euclidean Geometry
Abstract
Many real-world networks can be modeled as attributed networks, where nodes are affiliated with attributes. When we implement attributed network embedding, we need to face two types of heterogeneous information, namely, structural information and attribute information. The structural information of undirected networks is usually expressed as a symmetric adjacency matrix. Network embedding learning is to utilize the above information to learn the vector representations of nodes in the network. How to integrate these two types of heterogeneous information to improve the performance of network embedding is a challenge. Most of the current approaches embed the networks in Euclidean spaces, but the networks themselves are non-Euclidean. As a consequence, the geometric differences between the embedded space and the underlying space of the network will affect the performance of the network embedding. According to the non-Euclidean geometry of networks, this paper proposes an attributed network embedding framework based on hyperbolic geometry and the Ricci curvature, namely, RHAE. Our method consists of two modules: (1) the first module is an autoencoder module in which each layer is provided with a network information aggregation layer based on the Ricci curvature and an embedding layer based on hyperbolic geometry; (2) the second module is a skip-gram module in which the random walk is based on the Ricci curvature. These two modules are based on non-Euclidean geometry, but they fuse the topology information and attribute information in the network from different angles. Experimental results on some benchmark datasets show that our approach outperforms the baselines.
Keywords