Energies (Jul 2021)
Using ANN to Predict the Impact of Communication Factors on the Rework Cost in Construction Projects
Abstract
The construction sector has a large impact on the environment and available resources. Natural resources and energy consumption occurs not only during the operation of the facility, but also during its construction. In addition, this situation often occurs when work already completed requires rework. In such cases, not only the reuse of resources and energy occurs but also generation of waste. Many studies support the relationship between communication and project efficiency, which is expressed in the cost of rework. At present there is no available tool to quantify the evaluation of this relationship. This study aims to fill this knowledge gap. The article purpose was to create ANNs (artificial neural networks) for assessing and predicting the impact of communication factors on rework costs in construction projects. During the data collection phase, 12 factors that influence communication were identified and assessed. The level of rework costs in 18 construction projects was also calculated. We used ANN, which is a two-layer feedforward network with a sigmoid transfer function in the hidden layer and a linear transfer function in the output layer. The network input layer consists of 12 neurons while the hidden layer consists of 10 neurons and one output neuron. The optimal results of the mean square error and correlation were shown by the Levenberg–Marquardt algorithm. The proposed model can be used by project management as the integration decision support tool aimed at decreasing the number of reworks and reducing energy and resource consumption in construction projects.
Keywords