Antioxidants (Oct 2022)
Carbon Black Functionalized with Naturally Occurring Compounds in Water Phase for Electrochemical Sensing of Antioxidant Compounds
Abstract
A new sustainable route to nanodispersed and functionalized carbon black in water phase (W-CB) is proposed. The sonochemical strategy exploits ultrasounds to disaggregate the CB, while two selected functional naturally derived compounds, sodium cholate (SC) and rosmarinic acid (RA), act as stabilizing agents ensuring dispersibility in water adhering onto the CB nanoparticles’ surface. Strategically, the CB-RA compound is used to drive the AuNPs self-assembling at room temperature, resulting in a CB surface that is nanodecorated; further, this is achieved without the need for additional reagents. Electrochemical sensors based on the proposed nanomaterials are realized and characterized both morphologically and electrochemically. The W-CBs’ electroanalytical potential is proved in the anodic and cathodic window using caffeic acid (CF) and hydroquinone (HQ), two antioxidant compounds that are significant for food and the environment. For both antioxidants, repeatable (RSD ≤ 3.3%; n = 10) and reproducible (RSD ≤ 3.8%; n = 3) electroanalysis results were obtained, achieving nanomolar detection limits (CF: 29 nM; HQ: 44 nM). CF and HQ are successfully determined in food and environmental samples (recoveries 97–113%), and also in the presence of other phenolic classes and HQ structural isomers. The water dispersibility of the proposed materials can be an opportunity for (bio) sensor fabrication and sustainable device realization.
Keywords