Applied Sciences (Jan 2024)
New Concept of Dual-Sinusoid Distributed Fiber-Optic Sensors Antiphase-Placed for the SHM of Smart Composite Structures for Offshore
Abstract
This work is a follow-up to previous research by our team and is devoted to studying a dual-sinusoidal placement of distributed fiber-optic sensors (FOSs) that are embedded inside an adhesive joint between two composite laminates. The constructed smart continuous fiber-reinforced polymer composite structure is well suited to the structural health monitoring (SHM) system for offshore wind turbine blades. Three main drawbacks of SHM through embedded distributed FOSs, however, have been identified in this article, so their impact must be analyzed. Despite existing research, the influence of the dual-sinusoidal placement under various loading conditions on structural mechanical behavior and sensing functionality has not been considered yet since its introduction. Thus, this study aims to identify the resulting strain patterns and sensing capabilities from an optimized dual-sinusoidal placement of FOSs in various loading cases through finite element modeling. Ultimately, this work illustrates the strain-measuring advantages of dual-sinusoidal FOSs, explains the correspondence between the strains measured by FOSs and that of host structures, and discusses the balance among mechanical influences, sensing functions, and monitoring coverage. It is worth noting that the current work is a still introductory concept that aims at refining key parameters that have been emphasized in previous research, before starting an applied study that will consider both numerical and validation steps on real large smart composite structures.
Keywords