Nanoscale Research Letters (Oct 2019)

Nitrogen-Doped Porous Carbon Nanosheets Strongly Coupled with Mo2C Nanoparticles for Efficient Electrocatalytic Hydrogen Evolution

  • Ying Lei,
  • Yong Yang,
  • Yudong Liu,
  • Yaxing Zhu,
  • Mengmeng Jia,
  • Yang Zhang,
  • Ke Zhang,
  • Aifang Yu,
  • Juan Liu,
  • Junyi Zhai

DOI
https://doi.org/10.1186/s11671-019-3147-z
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Exploring earth-abundant and noble metal-free catalysts for water electrolysis is pivotal in renewable hydrogen production. Herein, a highly active electrocatalyst of nitrogen-doped porous carbon nanosheets coupled with Mo2C nanoparticles (Mo2C/NPC) was synthesized by a novel method with high BET surface area of 1380 m2 g−1 using KOH to activate carbon composite materials. The KOH plays a key role in etching out MoS2 to produce Mo precursor; simultaneously, it corrodes carbon to form porous structure and produce reducing gas such as H2 and CO. The resulting Mo2C/NPC hybrid demonstrated superior HER activity in acid solution, with the overpotential of 166 mV at current density of 10 mA cm−2, onset overpotential of 93 mV, Tafel slope of 68 mV dec−1, and remarkable long-term cycling stability. The present strategy may provide a promising strategy to fabricate other metal carbide/carbon hybrids for energy conversion and storage.

Keywords