Modern Stochastics: Theory and Applications (May 2023)
On geometric recurrence for time-inhomogeneous autoregression
Abstract
The time-inhomogeneous autoregressive model AR(1) is studied, which is the process of the form ${X_{n+1}}={\alpha _{n}}{X_{n}}+{\varepsilon _{n}}$, where ${\alpha _{n}}$ are constants, and ${\varepsilon _{n}}$ are independent random variables. Conditions on ${\alpha _{n}}$ and distributions of ${\varepsilon _{n}}$ are established that guarantee the geometric recurrence of the process. This result is applied to estimate the stability of n-steps transition probabilities for two autoregressive processes ${X^{(1)}}$ and ${X^{(2)}}$ assuming that both ${\alpha _{n}^{(i)}}$, $i\in \{1,2\}$, and distributions of ${\varepsilon _{n}^{(i)}}$, $i\in \{1,2\}$, are close enough.
Keywords