Pharmaceuticals (Jul 2023)

Luteolin Protects Pancreatic β Cells against Apoptosis through Regulation of Autophagy and ROS Clearance

  • Ming Han,
  • Yuting Lu,
  • Yunhua Tao,
  • Xinwen Zhang,
  • Chengqiu Dai,
  • Bingqian Zhang,
  • Honghong Xu,
  • Jingya Li

DOI
https://doi.org/10.3390/ph16070975
Journal volume & issue
Vol. 16, no. 7
p. 975

Abstract

Read online

Diabetes, which is mainly characterized by increased apoptosis and dysfunction of beta (β) cells, is a metabolic disease caused by impairment of pancreatic islet function. Previous studies have demonstrated that death-associated protein kinase-related apoptosis-inducing kinase-2 (Drak2) is involved in regulating β cell survival. Since natural products have multiple targets and often are multifunctional, making them promising compounds for the treatment of diabetes, we identified Drak2 inhibitors from a natural product library. Among the identified products, luteolin, a flavonoid, was found to be the most effective compound. In vitro, luteolin effectively alleviated palmitate (PA)-induced apoptosis of β cells and PA-induced impairment of primary islet function. In vivo, luteolin showed a tendency to lower blood glucose levels. It also alleviated STZ-induced apoptosis of β cells and metabolic disruption in mice. This function of luteolin partially relied on Drak2 inhibition. Furthermore, luteolin was also found to effectively relieve oxidative stress and promote autophagy in β cells, possibly improving β cell function and slowing the progression of diabetes. In conclusion, our findings show the promising effect of Drak2 inhibitors in relieving diabetes and offer a potential therapeutic target for the protection of β cells. We also reveal some of the underlying mechanisms of luteolin’s cytoprotective function.

Keywords