Micromachines (Jul 2023)

Silicon Micromachined TSVs for Backside Interconnection of Ultra-Small Pressure Sensors

  • Weiwen Feng,
  • Peng Li,
  • Haozhi Zhang,
  • Ke Sun,
  • Wei Li,
  • Jiachou Wang,
  • Heng Yang,
  • Xinxin Li

DOI
https://doi.org/10.3390/mi14071448
Journal volume & issue
Vol. 14, no. 7
p. 1448

Abstract

Read online

This paper presents an ultra-small absolute pressure sensor with a silicon-micromachined TSV backside interconnection for high-performance, high spatial resolution contact pressure sensing, including flexible-substrate applications. By exploiting silicon-micromachined TSVs that are compatibly fabricated with the pressure sensor, the sensing signals are emitted from the chip backside, thereby eliminating the fragile leads on the front-side. Such a design achieves a flat and fully passivated top surface to protect the sensor from mechanical damage, for reliable direct-contact pressure sensing. A single-crystal silicon beam–island structure is designed to reduce the deflection of the pressure-sensing diaphragm and improve output linearity. Using our group-developed microholes interetch and sealing (MIS) micromachining technique, we fabricated ultra-small piezoresistive pressure sensors with the chip size as small as 0.4 mm × 0.6 mm, in which the polysilicon-micromachined TSVs transfer the signal interconnection from the front-side to the backside of the wafer, and the sensor chips can be densely packaged on the flexible substrate via the TSVs. The ultra-small pressure sensor has high sensitivity of 0.84 mV/kPa under 3.3 V of supply voltage and low nonlinearity of ±0.09% full scale (FS) in the measurement range of 120 kPa. The proposed pressure sensors with backside-interconnection TSVs hold promise for tactile sensing applications, including flexible sensing of wearable wristwatches.

Keywords