Ecotoxicology and Environmental Safety (Sep 2023)

Ozone pollution, water deficit stress and time drive poplar phyllospheric bacterial community structure

  • Pin Li,
  • Xianjie Wu,
  • Feng Gao

Journal volume & issue
Vol. 262
p. 115148

Abstract

Read online

Ground-level ozone (O3) pollution often rise in the summer and coincide with drought stress, which alters the relationships between trees and associated microbial communities in a manner that can have pronounced effects on associated biological activity and ecosystem integrity. Discerning the responses of phyllosphere microbial communities to O3 and water deficit could highlight the ability of plant-microbe interactions to either exacerbate or mitigate the effects of these stressors. Accordingly, this study was designed as the first report to specifically interrogate the impacts of elevated O3 and water deficit stress on phyllospheric bacterial community composition and diversity in hybrid poplar saplings. Significant reductions in phyllospheric bacterial alpha diversity indices were observed, with clear evidence of significant time × water deficit stress interactions. The combination of elevated O3 and water deficit stress shifted in the bacterial community composition over sampling time, resulted in significant increases in the relative abundance of the dominant Gammaproteobacteria phyla together with reductions in Betaproteobacteria. An increased prevalence of Gammaproteobacteria may represent a potential diagnostic dysbiosis-related biosignature associated with poplar disease risk. Significant positive correlations were observed between both Betaproteobacteria abundance and diversity indices and key foliar photosynthetic traits and isoprene emissions, whereas these parameters were negatively correlated with Gammaproteobacteria abundance. These findings suggest that the photosynthesis-related properties in plant leaves are closely related to the makeup of the phyllosphere bacterial community. These data provide novel insight into how plant-associated microbes can help maintain plant health and the stability of the local ecosystem in O3-polluted and dried environments.

Keywords