Forum of Mathematics, Sigma (Jan 2019)

HIGH ORDER PARACONTROLLED CALCULUS

  • ISMAËL BAILLEUL,
  • FRÉDÉRIC BERNICOT

DOI
https://doi.org/10.1017/fms.2019.44
Journal volume & issue
Vol. 7

Abstract

Read online

We develop in this work a general version of paracontrolled calculus that allows to treat analytically within this paradigm a whole class of singular partial differential equations with the same efficiency as regularity structures. This work deals with the analytic side of the story and offers a toolkit for the study of such equations, under the form of a number of continuity results for some operators, while emphasizing the simple and systematic mechanics of computations within paracontrolled calculus, via the introduction of two model operations $\mathsf{E}$ and $\mathsf{F}$. We illustrate the efficiency of this elementary approach on the example of the generalized parabolic Anderson model equation $$\begin{eqnarray}(\unicode[STIX]{x2202}_{t}+L)u=f(u)\unicode[STIX]{x1D701},\end{eqnarray}$$ on a 3-dimensional closed manifold, and the generalized KPZ equation $$\begin{eqnarray}(\unicode[STIX]{x2202}_{t}+L)u=f(u)\unicode[STIX]{x1D701}+g(u)(\unicode[STIX]{x2202}u)^{2},\end{eqnarray}$$ driven by a $(1+1)$-dimensional space/time white noise.

Keywords