AIMS Mathematics (Nov 2024)
L0-Norm based Image Pansharpening by using population-based algorithms
Abstract
Earth observation satellites capture panchromatic images at high spatial resolution and multispectral images at lower resolution to optimize the use of their onboard energy sources. This results in a technical necessity to synthesize high-resolution multispectral images from these data. Pansharpening techniques aim to combine the spatial detail of panchromatic images with the spectral information of multispectral images. However, due to the discrete nature of these images and their varying local statistical properties, many pansharpening methods suffer from numerical artifacts such as chromatic and spatial distortions. This paper introduces the L0-Norm-based pansharpening method (L0pan), which addressed these challenges by maximizing the number of similar pixels between the synthesized pansharpened image and the original panchromatic and multispectral images. L0pan was optimized using a population-based colony search algorithm, enabling it to effectively balance both chromatic fidelity and spatial resolution. Extensive experiments across nine different datasets and comparison with nine other pansharpening methods using ten quality metrics demonstrated that L0pan significantly outperformed its counterparts. Notably, the colony search algorithm yielded the best overall results, highlighting the algorithm's strength in refining pansharpening accuracy. This study contributed to the advancement of pansharpening techniques, offering a method that preserved both chromatic and spatial details more effectively than existing approaches.
Keywords