BMJ Open Ophthalmology (Nov 2024)
Investigating the effects of simulated high altitude on colour discrimination
Abstract
Purpose To quantify changes in colour vision immediately after exposure to different altitudes of low-pressure hypoxia.Methods The study involved 35 healthy participants (ages 20–26). Colour vision was assessed using the Farnsworth-Munsell 100-Hue test at eight different altitudes (condition 1: ground, condition 2: 3500 m, condition 3: 3500 m after 40 min, condition 4: 4000 m, condition 5: 4000 m after 40 min, condition 6: 4500 m, condition 7: 4500 m after 40 min, condition 8: back to the ground). Data were analysed using Analysis of Variance (ANOVA), paired t-test, and χ2 test .Results Total Error Score (TES) increased with altitude and hypoxia duration, with higher TES in condition 8 than in condition 1. There were significant TES differences between conditions 3 and 7, as well as 4 and 7. Friedman and repeated ANOVA tests revealed significant sector differences, with Blue-Yellow Partial Error Score (PES) greater than Red-Green PES, particularly on conditions 4, 5 and 8. Significant Red-Green PES differences were found between conditions 4 and 7, and Blue-Yellow PES between conditions 3 and 5, 7, 8. Tritan (Blue-Yellow) shift was most pronounced at high altitudes.Conclusions This experiment investigated acute low-pressure hypoxia’s effects on colour vision, supplementing chronic hypoxia research. Increased altitudes and exposure duration worsen colour vision, with effects persisting post-recovery. Tritan axis loss is most significant under hypoxia.