BMC Cancer (Apr 2021)

Carnitine palmitoyl transferase 1A is a novel diagnostic and predictive biomarker for breast cancer

  • Zheqiong Tan,
  • Yaru Zou,
  • Man Zhu,
  • Zhenzhao Luo,
  • Tangwei Wu,
  • Chao Zheng,
  • Aqing Xie,
  • Hui Wang,
  • Shiqiang Fang,
  • Shuiyi Liu,
  • Yong Li,
  • Zhongxin Lu

DOI
https://doi.org/10.1186/s12885-021-08134-7
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background Carnitine palmitoyl transferase 1A (CPT1A), the key regulator of fatty acid oxidation, contributes to tumor metastasis and therapeutic resistance. We aimed to identify its clinical significance as a biomarker for the diagnosis and prediction of breast cancer. Methods Western blot, ELISA and in silico analysis were used to confirm CPT1A levels in breast cancer cell lines, cell culture medium and breast cancer tissues. Four hundred thirty breast cancer patients, 200 patients with benign breast disease, and 400 healthy controls were enrolled and randomly divided into a training set and a test set with a 7:3 ratio. Training set was used to build diagnostic models and 10-fold cross validation was used to demonstrate the performance of the models. Then test set was aimed to validate the effectiveness of the diagnostic models. ELISA was conducted to detect individual serum CPT1A levels. Receiver operating characteristic (ROC) curves were generated, and binary logistic regression analyses were performed to evaluate the effectiveness of CPT1A as a biomarker in breast cancer diagnosis. CPT1A levels between post-operative and pre-operative samples were also compared. Results CPT1A was overexpressed in breast cancer tissues, cell lines and cell culture medium. Serum CPT1A levels were higher in breast cancer patients than in controls and were significantly associated with metastasis, TNM stage, histological grading and molecular subtype. CPT1A levels were decreased in post-operative samples compared with paired pre-operative samples. Moreover, CPT1A exhibited a higher efficacy in differentiating breast cancer patients from healthy controls (training set: area under the curve, AUC, 0.892, 95% CI, 0.872–0.920; test set, AUC, 0.904, 95% CI, 0.869–0.939) than did CA15–3, CEA, or CA125. Conclusion CPT1A is overexpressed in breast cancer and can be secreted out of breast cancer cell. Serum CPT1A is positively associated with breast cancer progression and could serve as an indicator for disease monitoring. Serum CPT1A displayed a remarkably high diagnostic efficiency for breast cancer and could be a novel biomarker for the diagnosis of breast cancer.

Keywords