Infectious Disease Modelling (Mar 2025)

Information-guided adaptive learning approach for active surveillance of infectious diseases

  • Qi Tan,
  • Chenyang Zhang,
  • Jiwen Xia,
  • Ruiqi Wang,
  • Lian Zhou,
  • Zhanwei Du,
  • Benyun Shi

Journal volume & issue
Vol. 10, no. 1
pp. 257 – 267

Abstract

Read online

The infectious disease surveillance system is a key support tool for public health decision making. Current research concentrates on optimizing static sentinel deployment to address the problem of incomplete data due to the lack of sufficient surveillance resources. In this study, we introduce an information-guided adaptive learning strategy for the dynamic surveillance of infectious diseases. The goal is to improve monitoring effectiveness in situations where it is possible to adjust the focus of surveillance, such as serial surveys and allocation of testing tools. Specifically, we develop a probabilistic neural network model to learn spatio-temporal correlations among the numbers of infections. Based on a probabilistic model, we evaluate the information gain of monitoring a spatio-temporal target and design a greedy selection algorithm for monitoring targets selection. Moreover, we integrate two major surveillance objectives, i.e., informativeness and coverage, in the monitoring target selection. The experimental results on the synthetic dataset and two real-world datasets demonstrate the effectiveness of our approach, showcasing the promise of further exploration and application of dynamic adaptive active surveillance.

Keywords