Scientific Reports (Jun 2022)
PI3K/Akt pathway mediates the positive inotropic effects of insulin in Langendorff-perfused rat hearts
Abstract
Abstract Insulin exerts positive inotropic effects on cardiac muscle; however, the relationship between cardiac contractility and phosphoinositol-3-kinase/Akt (PI3K/Akt) activation remains unclear. We hypothesized that the positive inotropic effects of insulin are dose-dependent and mediated via the PI3K/Akt pathway in isolated normal rat hearts. The Institutional Animal Investigation Committee approved the use of hearts excised from rats under pentobarbital anesthesia. The hearts were perfused at a constant pressure using the Langendorff technique. After stabilization (baseline), the hearts were randomly divided into the following four insulin (Ins) groups: 1) Ins0 (0 IU/L), 2) Ins0.5 (0.5 IU/L), 3) Ins5 (5 IU/L), and 4) Ins50 (50 IU/L) (n = 8 in each group). To clarify the role of the PI3K/Akt pathway in insulin-dependent inotropic effects, we also treated the insulin groups with the PI3K inhibitor wortmannin (InsW): 5) InsW0 (0 IU/L), 6) InsW0.5 (0.5 IU/L), 7) InsW5 (5 IU/L), and 8) InsW50 (50 IU/L). Hearts were perfused with Krebs–Henseleit buffer solution with or without wortmannin for 10 min, followed by 20 min perfusion with the solution containing each concentration of insulin. The data were recorded as the maximum left ventricular derivative of pressure development (LV dP/dt max). Myocardial p-Akt levels were measured at 3 min, 5 min, and at the end of the perfusion. In the Ins groups, LV dP/dt max in Ins5 and Ins50 increased by 14% and 48%, respectively, 3 min after insulin perfusion compared with the baseline. Tachyphylaxis was observed after 10 min in the Ins5 and Ins50 treatment groups. Wortmannin partially inhibited the positive inotropic effect of insulin; although insulin enhanced p-Akt levels at all time points compared with the control group, this increase was suppressed in the presence of wortmannin. The positive inotropic effect of insulin is dose-dependent and consistent with Akt activation. This effect mediated by high doses of insulin on cardiac tissue was temporary and caused tachyphylaxis, potentially triggered by Akt overactivation, which leads beta 1 deactivation.