Algorithms (Mar 2022)

A Seed-Guided Latent Dirichlet Allocation Approach to Predict the Personality of Online Users Using the PEN Model

  • Saravanan Sagadevan,
  • Nurul Hashimah Ahamed Hassain Malim,
  • Mohd Heikal Husin

DOI
https://doi.org/10.3390/a15030087
Journal volume & issue
Vol. 15, no. 3
p. 87

Abstract

Read online

There is a growing interest in topic modeling to decipher the valuable information embedded in natural texts. However, there are no studies training an unsupervised model to automatically categorize the social networks (SN) messages according to personality traits. Most of the existing literature relied on the Big 5 framework and psychological reports to recognize the personality of users. Furthermore, collecting datasets for other personality themes is an inherent problem that requires unprecedented time and human efforts, and it is bounded with privacy constraints. Alternatively, this study hypothesized that a small set of seed words is enough to decipher the psycholinguistics states encoded in texts, and the auxiliary knowledge could synergize the unsupervised model to categorize the messages according to human traits. Therefore, this study devised a dataless model called Seed-guided Latent Dirichlet Allocation (SLDA) to categorize the SN messages according to the PEN model that comprised Psychoticism, Extraversion, and Neuroticism traits. The intrinsic evaluations were conducted to determine the performance and disclose the nature of texts generated by SLDA, especially in the context of Psychoticism. The extrinsic evaluations were conducted using several machine learning classifiers to posit how well the topic model has identified latent semantic structure that persists over time in the training documents. The findings have shown that SLDA outperformed other models by attaining a coherence score up to 0.78, whereas the machine learning classifiers can achieve precision up to 0.993. We also will be shared the corpus generated by SLDA for further empirical studies.

Keywords