Applied Sciences (Oct 2018)

Effects of the Phantom Shape on the Gradient Artefact of Electroencephalography (EEG) Data in Simultaneous EEG–fMRI

  • Muhammad E. H. Chowdhury,
  • Amith Khandakar,
  • Belayat Hossain,
  • Khawla Alzoubi

DOI
https://doi.org/10.3390/app8101969
Journal volume & issue
Vol. 8, no. 10
p. 1969

Abstract

Read online

Electroencephalography (EEG) signals greatly suffer from gradient artefacts (GAs) due to the time-varying field gradients in the magnetic resonance (MR) scanner during the simultaneous acquisition of EEG and functional magnetic resonance imaging (fMRI) data. The GAs are the principal contributors of artefacts while recording EEG inside an MR scanner, and most of them come from the interaction of the EEG cap and the subject’s head. Many researchers have been using a spherical phantom to characterize the GA in EEG data in combined EEG–fMRI studies. In this study, we investigated how the phantom shape could affect the characterization of the GA. EEG data were recorded with a spherical phantom, a head-shaped phantom, and six human subjects, individually, during the execution of customized and standard echo-planar imaging (EPI) sequences. The spatial potential maps of the root-mean-square (RMS) voltage of the GA over EEG channels for the trials with a head-shaped phantom closely mimicked those related to the human head rather than those obtained for the spherical phantom. This was confirmed by measuring the average similarity index (0.85/0.68). Moreover, a paired t-test showed that the head-shaped phantom’s and the spherical phantom’s data were significantly different (p < 0.005) from the subjects’ data, whereas the difference between the head-shaped phantom’s and the spherical phantom’s data was not significant (p = 0.07). The results of this study strongly suggest that a head-shaped phantom should be used for GA characterization studies in concurrent EEG–fMRI.

Keywords