Effect of N-Acetylcysteine in Mitochondrial Function, Redox Signaling, and Sirtuin 3 Levels in the Heart During Cardiorenal Syndrome Type 4 Development
Isabel Amador-Martínez,
Omar Emiliano Aparicio-Trejo,
Ana Karina Aranda-Rivera,
Bismarck Bernabe-Yepes,
Omar Noel Medina-Campos,
Edilia Tapia,
Carlo César Cortés-González,
Alejandro Silva-Palacios,
Francisco Javier Roldán,
Juan Carlos León-Contreras,
Rogelio Hernández-Pando,
Emma Saavedra,
José Guillermo Gonzaga-Sánchez,
Zeltzin Alejandra Ceja-Galicia,
Laura Gabriela Sánchez-Lozada,
José Pedraza-Chaverri
Affiliations
Isabel Amador-Martínez
Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1º Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán 04510, Mexico
Omar Emiliano Aparicio-Trejo
Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
Ana Karina Aranda-Rivera
Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
Bismarck Bernabe-Yepes
Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
Omar Noel Medina-Campos
Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
Edilia Tapia
Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
Carlo César Cortés-González
Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
Alejandro Silva-Palacios
Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
Francisco Javier Roldán
Departamento de Consulta Externa, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
Juan Carlos León-Contreras
Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ‘‘Salvador Zubirán’’, Mexico City 14000, Mexico
Rogelio Hernández-Pando
Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ‘‘Salvador Zubirán’’, Mexico City 14000, Mexico
Emma Saavedra
Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
José Guillermo Gonzaga-Sánchez
Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
Zeltzin Alejandra Ceja-Galicia
Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
Laura Gabriela Sánchez-Lozada
Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
José Pedraza-Chaverri
Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
Type 4 cardiorenal syndrome (CRS-4) is a pathology in which chronic kidney disease (CKD) triggers the development of cardiovascular disease. CKD pathophysiology produces alterations that can affect the bioenergetics of heart mitochondria, causing oxidative stress and reducing antioxidant glutathione (GSH) levels. GSH depletion alters protein function by affecting post-translational modifications such as S-glutathionylation (RS-SG), exacerbating oxidative stress, and mitochondrial dysfunction. On the other hand, N-acetylcysteine (NAC) is an antioxidant GSH precursor that modulates oxidative stress and RS-SG. Moreover, recent studies have found that NAC can activate the Sirtuin 3 (SIRT3) deacetylase in diseases. However, the role of NAC and its effects on mitochondrial function, redox signaling, and SIRT3 modifications in the heart during CRS-4 have not been studied. This study aimed to investigate the role of NAC in mitochondrial function, redox signaling, and SIRT3 in the hearts of animals with CRS-4 at two months of follow-up. Our results showed that the oral administration of NAC (600 mg/kg/day) improved blood pressure and reduced cardiac fibrosis. NACs’ protective effect was associated with preserving cardiac mitochondrial bioenergetics and decreasing these organelles’ hydrogen peroxide (H2O2) production. Additionally, NAC increased GSH levels in heart mitochondria and regulated the redox state, which coincided with an increase in nicotinamide adenine dinucleotide oxidized (NAD+) levels and a decrease in mitochondrial acetylated lysines. Finally, NAC increased SIRT3 levels and the activity of superoxide dismutase 2 (SOD-2) in the heart. Thus, treatment with NAC decreases mitochondrial alterations, restores redox signaling, and decreases SIRT3 disturbances during CRS-4 through an antioxidant defense mechanism.