Remote Sensing (Nov 2023)

Early Identification of Cotton Fields Based on Gf-6 Images in Arid and Semiarid Regions (China)

  • Chen Zou,
  • Donghua Chen,
  • Zhu Chang,
  • Jingwei Fan,
  • Jian Zheng,
  • Haiping Zhao,
  • Zuo Wang,
  • Hu Li

DOI
https://doi.org/10.3390/rs15225326
Journal volume & issue
Vol. 15, no. 22
p. 5326

Abstract

Read online

Accurately grasping the distribution and area of cotton for agricultural irrigation scheduling, intensive and efficient management of water resources, and yield estimation in arid and semiarid regions is of great significance. In this paper, taking the Xinjiang Shihezi oasis agriculture region as the study area, extracting the spectroscopic characterization (R, G, B, panchromatic), texture feature (entropy, mean, variance, contrast, homogeneity, angular second moment, correlation, and dissimilarity) and characteristics of vegetation index (normalized difference vegetation index/NDVI, ratio vegetation index/DVI, difference vegetation index/RVI) in the cotton flowering period before and after based on GF-6 image data, four models such as the random forests (RF) and deep learning approach (U-Net, DeepLabV3+ network, Deeplabv3+ model based on attention mechanism) were used to identify cotton and to compare their accuracies. The results show that the deep learning model is better than that of the random forest model. In all the deep learning models with three kinds of feature sets, the recognition accuracy and credibility of the DeepLabV3+ model based on the attention mechanism are the highest, the overall recognition accuracy of cotton is 98.23%, and the kappa coefficient is 96.11. Using the same Deeplabv3+ model based on an attention mechanism with different input feature sets (all features and only spectroscopic characterization), the identification accuracy of the former is much higher than that of the latter. GF-6 satellite image data in the field of crop type recognition has great application potential and prospects.

Keywords