Neural Regeneration Research (Jan 2024)
The role of exosomes in adult neurogenesis: implications for neurodegenerative diseases
Abstract
Exosomes are cup-shaped extracellular vesicles with a lipid bilayer that is approximately 30 to 200 nm in thickness. Exosomes are widely distributed in a range of body fluids, including urine, blood, milk, and saliva. Exosomes exert biological function by transporting factors between different cells and by regulating biological pathways in recipient cells. As an important form of intercellular communication, exosomes are increasingly being investigated due to their ability to transfer bioactive molecules such as lipids, proteins, mRNAs, and microRNAs between cells, and because they can regulate physiological and pathological processes in the central nervous system. Adult neurogenesis is a multistage process by which new neurons are generated and migrate to be integrated into existing neuronal circuits. In the adult brain, neurogenesis is mainly localized in two specialized niches: the subventricular zone adjacent to the lateral ventricles and the subgranular zone of the dentate gyrus. An increasing body of evidence indicates that adult neurogenesis is tightly controlled by environmental conditions with the niches. In recent studies, exosomes released from different sources of cells were shown to play an active role in regulating neurogenesis both in vitro and in vivo, thereby participating in the progression of neurodegenerative disorders in patients and in various disease models. Here, we provide a state-of-the-art synopsis of existing research that aimed to identify the diverse components of exosome cargoes and elucidate the therapeutic potential of exosomal contents in the regulation of neurogenesis in several neurodegenerative diseases. We emphasize that exosomal cargoes could serve as a potential biomarker to monitor functional neurogenesis in adults. In addition, exosomes can also be considered as a novel therapeutic approach to treat various neurodegenerative disorders by improving endogenous neurogenesis to mitigate neuronal loss in the central nervous system.
Keywords