Malaria Journal (Sep 2011)

Characterization and tissue-specific expression patterns of the <it>Plasmodium chabaudi cir </it>multigene family

  • Krücken Jürgen,
  • Ebbinghaus Petra

DOI
https://doi.org/10.1186/1475-2875-10-272
Journal volume & issue
Vol. 10, no. 1
p. 272

Abstract

Read online

Abstract Background Variant antigens expressed on the surface of parasitized red blood cells (pRBCs) are important virulence factors of malaria parasites. Whereas Plasmodium falciparum erythrocyte membrane proteins 1 (PfEMP1) are responsible for sequestration of mature parasites, little is known about putative ligands mediating cytoadherence to host receptors in other Plasmodium species. Candidates include members of the pir superfamily found in the human parasite Plasmodium vivax (vir), in the simian pathogen Plasmodium knowlesi (kir) and in the rodent malarias Plasmodium yoelii (yir), Plasmodium berghei (bir) and Plasmodium chabaudi (cir). The aim of this study was to reveal a potential involvement of cir genes in P. chabaudi sequestration. Methods Subfamilies of cir genes were identified by bioinformatic analyses of annotated sequence data in the Plasmodium Genome Database. In order to examine tissue-specific differences in the expression of cir mRNAs, RT-PCR with subfamily-specific primers was used. In total, 432 cDNA clones derived from six different tissues were sequenced to characterize the transcribed cir gene repertoire. To confirm differences in transcription profiles of cir genes, restriction fragment length polymorphism (RFLP) analyses were performed to compare different host tissues and to identify changes during the course of P. chabaudi infections in immunocompetent mice. Results The phylogenetic analysis of annotated P. chabaudi putative CIR proteins identified two major subfamilies. Comparison of transcribed cir genes from six different tissues revealed significant differences in the frequency clones belonging to individual cir gene subgroups were obtained from different tissues. Further hints of difference in the transcription of cir genes in individual tissues were obtained by RFLP. Whereas only minimal changes in the transcription pattern of cir genes could be detected during the developmental cycle of the parasites, switching to expression of other cir genes during the course of an infection was observed around or after peak parasitemia. Conclusions The tissue-specific expression of cir mRNAs found in this study indicates correlation between expression of CIR antigens and distribution of parasites in inner organs. Together with comparable results for other members of the pir superfamily this suggests a role of cir and other pir genes in antigenic variation and sequestration of malaria parasites.