Agronomy (Sep 2024)

Evaluation of Sugarcane Crop Growth Monitoring Using Vegetation Indices Derived from RGB-Based UAV Images and Machine Learning Models

  • P. P. Ruwanpathirana,
  • Kazuhito Sakai,
  • G. Y. Jayasinghe,
  • Tamotsu Nakandakari,
  • Kozue Yuge,
  • W. M. C. J. Wijekoon,
  • A. C. P. Priyankara,
  • M. D. S. Samaraweera,
  • P. L. A. Madushanka

DOI
https://doi.org/10.3390/agronomy14092059
Journal volume & issue
Vol. 14, no. 9
p. 2059

Abstract

Read online

Crop monitoring with unmanned aerial vehicles (UAVs) has the potential to reduce field monitoring costs while increasing monitoring frequency and improving efficiency. However, the utilization of RGB-based UAV imagery for crop-specific monitoring, especially for sugarcane, remains limited. This work proposes a UAV platform with an RGB camera as a low-cost solution to monitor sugarcane fields, complementing the commonly used multi-spectral methods. This new approach optimizes the RGB vegetation indices for accurate prediction of sugarcane growth, providing many improvements in scalable crop-management methods. The images were captured by a DJI Mavic Pro drone. Four RGB vegetation indices (VIs) (GLI, VARI, GRVI, and MGRVI) and the crop surface model plant height (CSM_PH) were derived from the images. The fractional vegetation cover (FVC) values were compared by image classification. Sugarcane plant height predictions were generated using two machine learning (ML) algorithms—multiple linear regression (MLR) and random forest (RF)—which were compared across five predictor combinations (CSM_PH and four VIs). At the early stage, all VIs showed significantly lower values than later stages (p r MI 2 = 0.90, RMSE = 0.37 m, MAE = 0.27 m, and AIC = 21.93). This study revealed that VIs and the CSM_PH derived from RGB images captured by UAVs could be useful in monitoring sugarcane growth to boost crop productivity.

Keywords