Applied Sciences (Mar 2021)

IpDFT-Tuned Estimation Algorithms for PMUs: Overview and Performance Comparison

  • David Macii,
  • Daniel Belega,
  • Dario Petri

DOI
https://doi.org/10.3390/app11052318
Journal volume & issue
Vol. 11, no. 5
p. 2318

Abstract

Read online

The Interpolated Discrete Fourier Transform (IpDFT) is one of the most popular algorithms for Phasor Measurement Units (PMUs), due to its quite low computational complexity and its good accuracy in various operating conditions. However, the basic IpDFT algorithm can be used also as a preliminary estimator of the amplitude, phase, frequency and rate of change of frequency of voltage or current AC waveforms at times synchronized to the Universal Coordinated Time (UTC). Indeed, another cascaded algorithm can be used to refine the waveform parameters estimation. In this context, the main novelty of this work is a fair and extensive performance comparison of three different state-of-the-art IpDFT-tuned estimation algorithms for PMUs. The three algorithms are: (i) the so-called corrected IpDFT (IpDFTc), which is conceived to compensate for the effect of both the image of the fundamental tone and second-order harmonic; (ii) a frequency-tuned version of the Taylor Weighted Least-Squares (TWLS) algorithm, and (iii) the frequency Down-Conversion and low-pass Filtering (DCF) technique described also in the IEEE/IEC Standard 60255-118-1:2018. The simulation results obtained in the P Class and M Class testing conditions specified in the same Standard show that the IpDFTc algorithm is generally preferable under the effect of steady-state disturbances. On the contrary, the tuned TWLS estimator is usually the best solution when dynamic changes of amplitude, phase or frequency occur. In transient conditions (i.e., under the effect of amplitude or phase steps), the IpDFTc and the tuned TWLS algorithms do not clearly outperform one another. The DCF approach generally returns the worst results. However, its actual performances heavily depend on the adopted low-pass filter.

Keywords