Agriculture (Aug 2023)

Novel Curve Fitting Analysis of NDVI Data to Describe Turf Fertilizer Response

  • Ken Carey,
  • Jacqueline E. Powers,
  • Alexandra Ficht,
  • Tim Dance,
  • Bahram Gharabaghi,
  • Eric M. Lyons

DOI
https://doi.org/10.3390/agriculture13081532
Journal volume & issue
Vol. 13, no. 8
p. 1532

Abstract

Read online

Evaluating the effectiveness of fertilizers on crops without traditional yield is difficult, as clipping collection is time-consuming and not indicative of the desired response to the fertilizer. Remote sensing techniques, like the normalized difference vegetation index (NDVI), have emerged as an effective tool to combat these issues. Canopy reflectance, measured by NDVI, is commonly used to differentiate turfgrass response to nitrogen (N) fertilization treatments; however, advancements in data processing are needed for greater differentiation between treatments and better testing of the effects of fertilizer responses. Presented here is an advancement in the processing of NDVI data by applying a compound exponential (pulse peak) function to changes in NDVI over time, relative to a control. This method’s effectiveness in differentiating between fertilizers was evaluated by applying polymer-coated urea (PCU), an enhanced efficiency fertilizer (EEF), and urea on turfgrass to show the usefulness of the novel curve fitting in highlighting differences in fertilizer response. The field study was carried out on an established Kentucky bluegrass (Poa pratensis L.) blend on a sandy loam soil rootzone maintained with a typical home lawn maintenance regime. Ratios of PCU to urea ranging from 100% urea to 100% PCU with increments of 20% of PCU were used to observe a continuum of response between the two fertilizer types. The N rate for all blends was 73 kg ha−1, with unfertilized plots used as a control to set baseline measurements for the curve fitting. Turfgrass response to N fertilization treatments was assessed through visual turfgrass quality ratings, dry matter yield, and canopy reflectance, where higher urea content resulted in the shortest time to maximum ∆NDVI (24 days), while 100% EEF reached maximum ∆NDVI at 56 days. The novel curve fitting analysis of the NDVI data allowed for differentiation between treatments, provided a measure of fertilizer effects, and differentiated between urea and enhanced efficiency fertilizers.

Keywords