Scientific Reports (Jul 2017)

Ultrafast intersystem crossings in Fe-Co Prussian blue analogues

  • Michel van Veenendaal

DOI
https://doi.org/10.1038/s41598-017-06664-4
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 7

Abstract

Read online

Abstract Ultrafast spincrossover is studied in Fe-Co Prussian blue analogues using a dissipative quantum-mechanical model of a cobalt ion coupled to a breathing mode. All electronic interactions are treated on an equal footing. It is theoretically demonstrated that the divalent cobalt ion reaches 90% of the $$S{\boldsymbol{=}}\frac{{\bf{3}}}{{\bf{2}}}$$ S = 3 2 value within 20 fs after photoexciting a low-spin Co3+ ion by an iron-to-cobalt charge transfer. The doublet-to-quartet spin crossover is significantly faster than the oscillation period of the breathing mode. The system relaxes to the lowest manifold of divalent cobalt (4 T 1) in 150–200 fs. Strong oscillations in spin-orbit coupling and the involvement of higher-lying quartets are found.