Journal of Nanobiotechnology (Nov 2023)

Near infrared II excitation nanoplatform for photothermal/chemodynamic/antibiotic synergistic therapy combating bacterial biofilm infections

  • Xuanzong Wang,
  • Chi Zhang,
  • Liuliang He,
  • Mingfei Li,
  • Pengfei Chen,
  • Wan Yang,
  • Pengfei Sun,
  • Daifeng Li,
  • Yi Zhang

DOI
https://doi.org/10.1186/s12951-023-02212-7
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Drug-resistant bacterial biofilm infections (BBIs) are refractory to elimination. Near-infrared-II photothermal therapy (NIR-II PTT) and chemodynamic therapy (CDT) are emerging antibiofilm approaches because of the heavy damage they inflict upon bacterial membrane structures and minimal drug-resistance. Hence, synergistic NIR-II PTT and CDT hold great promise for enhancing the therapeutic efficacy of BBIs. Herein, we propose a biofilm microenvironment (BME)-responsive nanoplatform, BTFB@Fe@Van, for use in the synergistic NIR-II PTT/CDT/antibiotic treatment of BBIs. BTFB@Fe@Van was prepared through the self-assembly of phenylboronic acid (PBA)-modified small-molecule BTFB, vancomycin, and the CDT catalyst Fe2+ ions in DSPE-PEG2000. Vancomycin was conjugated with BTFB through a pH-sensitive PBA-diol interaction, while the Fe2+ ions were bonded to the sulfur and nitrogen atoms of BTFB. The PBA-diol bonds decomposed in the acidic BME, simultaneously freeing the vancomycin and Fe2+ irons. Subsequently, the catalytic product hydroxyl radical was generated by the Fe2+ ions in the oxidative BME overexpressed with H2O2. Moreover, under 1064 nm laser, BTFB@Fe@Van exhibited outstanding hyperthermia and accelerated the release rate of vancomycin and the efficacy of CDT. Furthermore, the BTFB@Fe@Van nanoplatform enabled the precise NIR-II imaging of the infected sites. Both in-vitro and in-vivo experiments demonstrated that BTFB@Fe@Van possesses a synergistic NIR-II PTT/CDT/antibiotic mechanism against BBIs.

Keywords