Advanced Science (Apr 2020)

Reduced Graphene Oxide–Based Spectrally Selective Absorber with an Extremely Low Thermal Emittance and High Solar Absorptance

  • Qihua Liao,
  • Panpan Zhang,
  • Houze Yao,
  • Huhu Cheng,
  • Chun Li,
  • Liangti Qu

DOI
https://doi.org/10.1002/advs.201903125
Journal volume & issue
Vol. 7, no. 8
pp. n/a – n/a

Abstract

Read online

Abstract Carbon‐based black materials exhibit strong solar absorptance (αsolar >0.90), which play key roles in transforming solar energy into available power for solar‐thermal, thermophotovoltaic, thermoelectric, and many other systems. However, because of high thermal emittance (>95%), these carbon‐based materials always cause huge energy loss that hinders the solar‐thermal conversion efficiency tremendously. In this study, a reduced graphene oxide–based spectrally selective absorber (rGO‐SSA) is demonstrated, which possesses a recorded low thermal emittance (≈4%) and high solar absorptance (αsolar ≈ 0.92) by easily regulating the reduction level of inner 2D graphene sheets. Compared to conventional carbon‐based black materials, thermal emittance of this rGO‐SSA is largely reduced by ≈95.8% and the cutoff wavelength of rGO‐SSA is broadband‐tunable that can range from 1.1 to 3.2 µm. More importantly, this simply sol‐gel coated rGO‐SSA has high temperature tolerance at 800 °C for 96 h that is hardly achieved by other cermet‐based or photonic‐based SSAs. Based on this rGO‐SSA, ultrafast solar steam escape (0.94 mg cm−2 s−1) under concentrated solar irradiance is achieved directly. The insight from this study will provide a new strategy for constructing thermally stable carbon‐based SSAs and greatly facilitate the solar‐thermal practical significance.

Keywords