Sensors (May 2021)

Detection of Postural Control in Young and Elderly Adults Using Deep and Machine Learning Methods with Joint–Node Plots

  • Posen Lee,
  • Tai-Been Chen,
  • Chi-Yuan Wang,
  • Shih-Yen Hsu,
  • Chin-Hsuan Liu

DOI
https://doi.org/10.3390/s21093212
Journal volume & issue
Vol. 21, no. 9
p. 3212

Abstract

Read online

Postural control decreases with aging. Thus, an efficient and accurate method of detecting postural control is needed. We enrolled 35 elderly adults (aged 82.06 ± 8.74 years) and 20 healthy young adults (aged 21.60 ± 0.60 years) who performed standing tasks for 40 s, performed six times. The coordinates of 15 joint nodes were captured using a Kinect device (30 Hz). We plotted joint positions into a single 2D figure (named a joint–node plot, JNP) once per second for up to 40 s. A total of 15 methods combining deep and machine learning for postural control classification were investigated. The accuracy, sensitivity, specificity, positive predicted value (PPV), negative predicted value (NPV), and kappa values of the selected methods were assessed. The highest PPV, NPV, accuracy, sensitivity, specificity, and kappa values were higher than 0.9 in validation testing. The presented method using JNPs demonstrated strong performance in detecting the postural control ability of young and elderly adults.

Keywords