Atmospheric Chemistry and Physics (Nov 2024)

Understanding the mechanism and importance of brown carbon bleaching across the visible spectrum in biomass burning plumes from the WE-CAN campaign

  • Y. Shen,
  • R. P. Pokhrel,
  • R. P. Pokhrel,
  • A. P. Sullivan,
  • E. J. T. Levin,
  • E. J. T. Levin,
  • L. A. Garofalo,
  • D. K. Farmer,
  • W. Permar,
  • L. Hu,
  • D. W. Toohey,
  • T. Campos,
  • E. V. Fischer,
  • S. M. Murphy

DOI
https://doi.org/10.5194/acp-24-12881-2024
Journal volume & issue
Vol. 24
pp. 12881 – 12901

Abstract

Read online

Aerosol absorption of visible light has an important impact on global radiative forcing. Wildfires are one of the major sources of light-absorbing aerosol, but there remains significant uncertainty about the magnitude, wavelength dependence, and bleaching of absorption from biomass burning aerosol. We collected and analyzed data from 21 western US wildfire smoke plumes during the 2018 Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption and Nitrogen (WE-CAN) airborne measurement campaign to determine the contribution of black carbon (BC), brown carbon (BrC), and lensing to the aerosol mass absorption cross section (MAC). Comparison to commonly used parameterizations and modeling studies suggests that model overestimation of absorption is likely due to incorrect BrC refractive indices. Modelers (Wang et al., 2018; Carter et al., 2021) invoke a bleaching process that decreases the MAC of organic aerosol (OA) to offset the overestimation of absorption in models. However, no evidence of a decreasing MAC is observed in individual WE-CAN fire plumes or in aged plumes from multiple fires. A decrease in OA mass and water-soluble organic carbon (WSOC), both normalized by carbon monoxide (CO) to correct for dilution, is observed with an increasing oxygen-to-carbon (O : C) ratio and a decreasing gas-phase toluene : benzene ratio, when data from all fires are combined in half of the individual fire plumes. This results in a strong decrease in total absorption at 405 nm and a slight decrease at 660 nm with these chemical markers. These results demonstrate that changes in absorption with chemical markers of plume age are the result of decreasing OA rather than changes in the MAC of the organic material itself. While decreasing MAC or OA mass with aging could both be called bleaching and can both correct overestimation of absorption in models, it is important to distinguish between these two effects because decreasing OA mass will also decrease scattering, which will cause a significantly different net radiative effect. We also find that an average of 54 % of non-BC absorption (23 % total absorption) at 660 nm is from water-soluble BrC, confirming that BrC absorption is important across the visible spectrum. Quantification of significant BrC at red wavelengths and observation of bleaching being caused by changes in OA with O : C and toluene : benzene markers of plume age provide important improvements to our understanding of BrC and critical constraints on aerosol absorption in regional and global climate models.