Comptes Rendus. Mathématique (Nov 2023)

Torus quotient of the Grassmannian $G_{n,2n}$

  • Nayek, Arpita,
  • Saha, Pinakinath

DOI
https://doi.org/10.5802/crmath.501
Journal volume & issue
Vol. 361, no. G9
pp. 1499 – 1509

Abstract

Read online

Let $G_{n,2n}$ be the Grassmannian parameterizing the $n$-dimensional subspaces of $\mathbb{C}^{2n}$. The Picard group of $G_{n,2n}$ is generated by a unique ample line bundle $\mathcal{O}(1)$. Let $T$ be a maximal torus of $\mathrm{SL}(2n,\mathbb{C})$ which acts on $G_{n,2n}$ and $\mathcal{O}(1)$. By [10, Theorem 3.10, p. 764], $2$ is the minimal integer $k$ such that $\mathcal{O}(k)$ descends to the GIT quotient. In this article, we prove that the GIT quotient of $G_{n,2n}$ ($n\ge 3$) by $T$ with respect to $\mathcal{O}(2)=\mathcal{O}(1)^{\otimes 2}$ is not projectively normal when polarized with the descent of $\mathcal{O}(2)$.

Keywords