Retrovirology (Feb 2009)

Effects of the K65R and K65R/M184V reverse transcriptase mutations in subtype C HIV on enzyme function and drug resistance

  • Coutsinos Dimitrios,
  • Ntemgwa Michel L,
  • Martinez-Cajas Jorge L,
  • Xu Hong-Tao,
  • Frankel Fernando A,
  • Brenner Bluma G,
  • Wainberg Mark A

DOI
https://doi.org/10.1186/1742-4690-6-14
Journal volume & issue
Vol. 6, no. 1
p. 14

Abstract

Read online

Abstract Background We investigated the effects of mutations K65R and K65R plus M184V on enzymatic function and mechanisms of drug resistance in subtype C reverse transcriptase (RT). Methods Recombinant subtype C HIV-1 RTs containing K65R or K65R+M184V were purified from Escherichia coli. Enzyme activities and tenofovir (TFV) incorporation efficiency by wild-type (WT) and mutant RTs of both subtypes were determined in cell-free assays. Efficiency of (-) ssDNA synthesis and initiation by subtype C RTs was measured using gel-based assays with HIV-1 PBS RNA template and tRNA3Lys as primer. Single-cycle processivity was assayed under variable dNTP concentrations. Steady-state analysis was performed to measure the relative inhibitory capacity (ki/km) of TFV-disphosphate (TFV-DP). ATP-dependent excision and rescue of TFV-or ZDV-terminated DNA synthesis was monitored in time-course experiments. Results The efficiency of tRNA-primed (-)ssDNA synthesis by subtype C RTs was: WT > K65R > K65R+M184V RT. At low dNTP concentration, K65R RT exhibited lower activity in single-cycle processivity assays while the K65R+M184V mutant showed diminished processivity independent of dNTP concentration. ATP-mediated excision of TFV-or ZDV-terminated primer was decreased for K65R and for K65R+M184V RT compared to WT RT. K65R and K65R+M184V displayed 9.8-and 5-fold increases in IC50 for TFV-DP compared to WT RT. The Ki/Km of TFV was increased by 4.1-and 7.2-fold, respectively, for K65R and K65R+M184V compared to WT RT. Conclusion The diminished initiation efficiency of K65R-containing RTs at low dNTP concentrations have been confirmed for subtype C as well as subtype B. Despite decreased excision, this decreased binding/incorporation results in diminished susceptibility of K65R and K65R+M184 RT to TFV-DP.