Geochemistry, Geophysics, Geosystems (May 2021)

Bayesian Seismic Refraction Inversion for Critical Zone Science and Near‐Surface Applications

  • Mong‐Han Huang,
  • Berit Hudson‐Rasmussen,
  • Scott Burdick,
  • Vedran Lekic,
  • Mariel D. Nelson,
  • Kristen E. Fauria,
  • Nicholas Schmerr

DOI
https://doi.org/10.1029/2020GC009172
Journal volume & issue
Vol. 22, no. 5
pp. n/a – n/a

Abstract

Read online

Abstract The critical zone (CZ) is the region of the Earth’s surface that extends from the bottom of the weathered bedrock to the tree canopy and is important because of its ability to store water and support ecosystems. A growing number of studies use active source shallow seismic refraction to explore and define the size and structure of the CZ across landscapes. However, measurement uncertainty and model resolution at depth are generally not evaluated, which makes the identification and interpretation of CZ features inconclusive. To reliably resolve seismic velocity with depth, we implement a Transdimensional Hierarchical Bayesian (THB) framework with reversible‐jump Markov Chain Monte Carlo to generate samples from the posterior distribution of velocity structures. We also perform 2D synthetic tests to explore how well THB traveltime inversion can resolve different subsurface velocity structures. We find that THB recovers both sharp changes in velocity as well as gradual velocity increases with depth. Furthermore, we explore the velocity structure in a series of ridge‐valley systems in northern California. The posterior velocity model shows an increasing thickness of low velocity material from channels to ridgetops along a transect parallel to bedding strike, implying a deeper weathering zone below ridgetops and hillslopes than below channels. The THB method enhances the ability to reliably image CZ structure, and the model uncertainty estimates it yields provides an objective way to interpret deep CZ structure. The method can be applied across other near‐surface studies, especially in the presence of significant surface topography.

Keywords