Polymers (Nov 2020)

Study on the Microstructure of Polyether Ether Ketone Films Irradiated with 170 keV Protons by Grazing Incidence Small Angle X-ray Scattering (GISAXS) Technology

  • Hongxia Li,
  • Jianqun Yang,
  • Feng Tian,
  • Xingji Li,
  • Shangli Dong

DOI
https://doi.org/10.3390/polym12112717
Journal volume & issue
Vol. 12, no. 11
p. 2717

Abstract

Read online

Polyether ether ketone (PEEK) films irradiated with 170 keV protons were calculated by the stopping and ranges of ions in matter (SRIM) software. The results showed that the damage caused by 170 keV protons was only several microns of the PEEK surface, and the ionization absorbed dose and displacement absorbed dose were calculated. The surface morphology and roughness of PEEK after proton irradiation were studied by atomic force microscope (AFM). GISAXS was used to analyze the surface structural information of the pristine and irradiated PEEK. The experimental results showed that near the surface of the pristine and irradiated PEEK exists a peak, and the peak gradually disappeared with the increasing of the angles of incidence and the peak changed after irradiation, which implies the 170 keV protons have an effect on PEEK structure. The influences of PEEK irradiated with protons on the melting temperature and crystallization temperature was investigated by differential scanning calorimetry (DSC). The DSC results showed that the crystallinity of the polymer after irradiation decreased. The structure and content of free radicals of pristine and irradiated PEEK were studied by Fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance (EPR). The stress and strain test results showed that the yield strength of the PEEK irradiated with 5 × 1015 p/cm2 and 1 × 1016 p/cm2 was higher than the pristine, but the elongation at break of the PEEK irradiated with 5 × 1015 p/cm2 and 1 × 1016 p/cm2 decreased obviously.

Keywords