Advances in Materials Science and Engineering (Jan 2013)
Sensitivity Analysis of the Artificial Neural Network Outputs in Friction Stir Lap Joining of Aluminum to Brass
Abstract
Al-Mg and CuZn34 alloys were lap joined using friction stir welding while the aluminum alloy sheet was placed on the CuZn34. In addition, the mechanical properties of each sample were characterized using shear tests. Scanning electron microscopy (SEM) and X-ray diffraction analysis were used to probe chemical compositions. An artificial neural network model was developed to simulate the correlation between the Friction Stir Lap Welding (FSLW) parameters and mechanical properties. Subsequently, a sensitivity analysis was performed to investigate the effect of each input parameter on the output in terms of magnitude and direction. Four methods, namely, the “PaD” method, the “Weights” method, the “Profile” method, and the “backward stepwise” method, which can give the relative contribution and/or the contribution profile of the input factors, were compared. The PaD method, giving the most complete results, was found to be the most useful, followed by the Profile method that gave the contribution profile of the input variables.